
SNUG San Jose 2000

1

1

ASIC Flow Engine for Timing
Closure (AFETC),

a Makefile Generator to Automate the Design
Budgeter Methodology

Thomas D. Tessier,
t2design Incorporated

Marvin L. Anderson, StorageTek

SNUG San Jose 2000

2

2

Discussion Outline

• Why Another Makefile Generator?
• What did we automate?
• Why bite off such a large piece of pie?

– RTL Source
– Design Budgeting
– Floorplanning
– Timing Closure

• Lessons Learned!

SNUG San Jose 2000

3

3

What we Automated?

SNUG San Jose 2000

4

4

RTL to GTECH

SNUG San Jose 2000

5

5

GTECH to Gates

SNUG San Jose 2000

6

6

Layout to Timing Closure

SNUG San Jose 2000

7

7

Why another Makefile Generator?

• Using Design Budgeter thus many iterations through Design
Compiler.
– Bottom-up constraints were not going to be feasible?

• Using Avant! P&R tools
– Exploit in-house layout tools and experts.
– Use the tools to their fullest advantage.

• Isn’t every environment unique?
– “Not Invented Here”

SNUG San Jose 2000

8

8

Why Bite off Such a Large Piece of the
Pie?

• Desired to control RTL to finished gates.
• Desired to provide design engineers more control and access

to the layout process.
• Desired to be able to reach timing closure.

– Over the wall net list was not going to be sufficient for current 0.20u
designs and in the future.

SNUG San Jose 2000

9

9

RTL Source Reference

• We wanted a method to control which RTL version built the
gates. It was important to be able to recreate at any version.

• Discovered that RTL processing was a very small part of the
problem.

• Desired to give the engineers early visibility into the synthesis
process and if RTL built good designs.

SNUG San Jose 2000

10

10

Floorplanning, Wireloads and Timing
Closure

• What do you learn and what can you use from the Floorplan?
– Large buses and interconnect blockages.

• Wireloads; do we really want them and when do we create
them?
– Early for synthesis and post route.

• Timing Closure is getting to an acceptable margin that the
design group feels confident they can sign off on the ASIC.

• Timing closure involves many tools; we desired repeatability of
our results, thus we wanted even this flow automated.

SNUG San Jose 2000

11

11

Lessons Learned

• What have we learned from developing a tool of this size?
– Scripting takes time and experimentation. We could not have

developed this tool until we proved the flow. We would not have
developed the flow without a tool to automate it.

• Logical vs. Physical.
• Physical Tools Don’t Always Give you what you Need!
• The Make Circle.
• Successful Timing Closure.
• Why Don’t we have a Central Script Location?

SNUG San Jose 2000

12

12

Logical vs. Physical

• Early in the development we kept the Logical design team
focused on Logic Design and Verification.

• Physical structure was handled with the ungroup commands.
• Our designers wrote small modules which did not exploit the

tools capacities.
• Keep Logical and Physical close. Only use the ungroup

command to make blocks bigger to utilize the greater tool
capacity.

SNUG San Jose 2000

13

13

Physical Tools Don’t Always Give you
what you Need (Wireloads).

• Wireloads were desired early to give Synthesis knowledge of
the length and loading of wires.
– Avant! Planet wrote out table form.

Developed a method to read in the wireloads in memory and to keep
them applied throughout optimization.

– Avant! Apollo provides very complete data as long as you used the
resulting SPEF, PDEF, “set_load” and Verilog.
Use FPM “create_clusters” command.

• Making wireloads stick?
– Beware, Budget_shell constraints replaced the wireload model and

selection. Need to force DC to use the custom wireloads.

SNUG San Jose 2000

14

14

Physical Tools Don’t Always Give you
what you Need (Location Based Opt).

• Location Based Optimization, used for timing closure, has a
very stringent data requirements.
– Avant! Planet did not provide everything.

After reading in SDF file, write it back out from DC, reset timing then
read it back in fixed most of the problems we were having.

– Avant! Apollo provides very complete data as long as you used the
resulting SPEF, PDEF, “set_load” and Verilog.
You must use the layout tools Verilog, don’t even try to link to your
source DB.

• Be prepared to handle Gbyte files and to use Gbyte files as
temporary’s
– Everything takes time with big files.

SNUG San Jose 2000

15

15

The Make Circle and other Scripting Issues

• Managing Inputs to Make seems straight forward.
– Beware of creating intermediate files which Make believes are inputs. It

will try to find its sources and refuse to build.
• Make within Perl can you say Slash (\) and (\\)?
• Tcl within Perl, can you say confused; does the variable have a

$ or is it { or [?
• Variable expansion always a problem when using multiple

languages.
• A generator is responsible for the repeatability of the process.

SNUG San Jose 2000

16

16

Successful Timing Closure?

• Cooperation of many Disciplines
– RTL designers writing good designs

Linting, early synthesis and an understanding of timing always helpful
– Synthesis Engineer understanding both the RTL (logical) and the Chip

(Physical) design requirements.
– Layout Engineer, willingness to try some of the Synthesis engineers wild

ideas.
• Willingness to experiment

– You must start practicing your synthesis and timing closure loops early.

SNUG San Jose 2000

17

17

Why we Don’t have a Central Script
Location?

• Desired independence of each ASICs which used the tool.
• Minimum Impact if an ASIC team took a new approach.
• Only one tool to copy over for all the support scripts and

template scripts.
• Central location would require testing on existing ASICs. The

overhead was not wanted.

SNUG San Jose 2000

18

18

Conclusions and Future Directions

• Repeatability is the key to any tool.
• Extensibility is the next most important feature for the tool

writer to consider.
• Make provides a vehicle to generate repeatability.
• Should we have a GUI?
• Investigation of Synopsys ACS, how much does it do for us?

Can we extend it to do what we need?
• Without Data Management repeatability is not possible, see

Steve Remme’s presentation “Migrating a Large Multi-team
Simulation Environment” next.

